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CLASSIFICATION OF A FAMILY OF THREE DIMENSIONAL REAL

EVOLUTION ALGEBRAS

A.N. IMOMKULOV1

Abstract. In this paper we classify a family of three-dimensional real evolution algebras.

We also consider an evolution operator for an evolution algebra and find fixed points of this

operator for two and three-dimensional cases. Then we construct an evolution algebra, the

matrix of structural constants of which is Jacobian of the evolution operator at a fixed point.

We study isomorphism between these evolution algebras.
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1. Introduction

To study a non-linear function one usually finds the linear approximation to the function at

a given point. The linear approximation of a function is the first order Taylor expansion around

the point of interest. In the theory of dynamical systems, linearization is a method for assessing

the local stability of an equilibrium point. For an algebra (with a fixed multiplication ∗) and

the (cubic) matrix M of structural constants one can define a quadratic (non-linear) operator

F (x) = x∗x, with coefficients given by the matrix M. The Jacobian J of F at a given point, can

be considered as a linear approximation of F . Consequently, J generates an evolution algebra

as its matrix of structural constants.

Let (A, ·) be an algebra over a field K. If it admits a countable basis e1, e2, . . . , en, . . . , such

that
ei · ej = 0, if i ̸= j

ei · ei =
∑
k

aikek, for any i

then it is called an evolution algebra. This basis is called a natural basis.

We note that to every evolution algebra corresponds a square matrix (aik) of structural

constants of the given evolution algebra.

In [10] the following basic properties of evolution algebras are proved:

1) Evolution algebras are not associative, in general.

2) Evolution algebras are commutative, flexible.

3) Evolution algebras are not power-associative, in general.

4) The direct sum of evolution algebras is also an evolution algebra.

In [7] the dynamics of absolutely nilpotent and idempotent elements in chains generated

by two-dimensional evolution algebras are studied. In [2] the authors consider an evolution

algebra which has a rectangular matrix of structural constants. This algebra is called evolution

algebras of “chicken” population (EACP). The mentioned paper is devoted to the description
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of structure of EACPs. Using the Jordan form of the rectangular matrix of structural constants,

a simple description of EACPs over the field of complex numbers is given. The classification of

three-dimensional complex EACPs is obtained. Moreover, some (n+1)-dimensional EACPs are

described. The fundamentals of evolution algebras have been being developed in the last years

with no probabilistic restrictions on the stucture constants [4, 5, 8].

In Section 2 we study an approximation of two-dimensional real evolution algebras and iso-

morphism between these algebras. In Section 3 we will classify a family of three-dimensional

real evolution algebras. We show that there are 13 class of such evolution algebras. We con-

sider an approximation of three-dimensional real evolution algebras in Section 4 and also study

isomorphism between these algebras.

2. Approximation of two-dimensional real evolution algebras

Let E be a 2-dimensional evolution algebra over the field of real numbers. Such algebras are

classified in [6]:

Theorem 2.1. [6] Any two-dimensional real evolution algebra E is isomorphic to one of the

following pairwise non-isomorphic algebras:

(i) dim(E2) = 1:

E1: e1e1 = e1, e2e2 = 0;

E2: e1e1 = e1, e2e2 = e1;

E3: e1e1 = e1 + e2, e2e2 = −e1 − e2;

E4: e1e1 = e2, e2e2 = 0;

E5: e1e1 = e2, e2e2 = −e2;

(ii) dim(E2) = 2:

E6(a2; a3): e1e1 = e1 + a2e2, e2e2 = a3e1 + e2; 1− a2a3 ̸= 0, a2, a3 ∈ R. Moreover E6(a2; a3)

is isomorphic to E6(a3; a2).

E7(a4): e1e1 = e2, e2e2 = e1 + a4e4, where a4 ∈ R;

For a given evolution algebra (E, ·) an evolution operator has the following form F (x) =

x · x = x2. If x =
n∑

i=1
xiei then

x2 =
n∑

i=1

x2i e
2
i =

n∑
i=1

x2i
( n∑
k=1

aikek
)
=

n∑
k=1

( n∑
i=1

aikx
2
i

)
ek.

We denote x′k =
∑n

i=1 aikx
2
i . Thus we have the following operator, F : E → E,

F : x′k =

n∑
i=1

aikx
2
i , k = 1, n.

Jacobian of the operator F at the point x for two-dimensional case has a form

JF (x) =

(
2a11x1 2a21x2
2a12x1 2a22x2

)
.

Following [9] and [3] we define an evolution algebra Ẽ with matrix JF (x) as the matrix of

structural constants.

We will find fixed points of this operator, i.e. solutions of F (x) = x :{
x1 = a11x

2
1 + a21x

2
2,

x2 = a12x
2
1 + a22x

2
2.

(1)
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Note that (0, 0) is one of solutions of system of equations (1), and

JF (0, 0) =

(
0 0

0 0

)
.

So corresponding evolution algebra with matrix JF (0, 0) is trivial.

Trivial evolution algebras are not interesting. So we will find a non-zero solutions denoted by

(x01;x
0
2) of (1) for algebras Ei, i = 1, 2, . . . , 7 mentioned in Theorem 2.1 and study isomorphisms

of evolution algebras corresponding to these fixed points with other evolution algebras.

In the following table we give all possibilities for two-dimensional case:

2-dimensional real Non-zero real fixed Corresponding evolution

evolution algebras points of the operator F algebras to fixed points

E1 :

(
1 0

0 0

)
(1; 0) Ẽ1 :

(
2 0

0 0

)
E2 :

(
1 0

1 0

)
(1; 0) Ẽ2 :

(
2 0

0 0

)
E3 :

(
1 1

−1 −1

)
Not exists Not exists

E4 :

(
0 1

0 0

)
Not exists Not exists

E5 :

(
0 1

0 −1

)
(0;−1) Ẽ5 :

(
0 0

0 2

)
E6(a2; a3) :

(
1 a2
a3 1

)
(x01;x

0
2) Ẽ6(a2; a3) :

(
2x01 2a3x

0
2

2a2x
0
1 2x02

)
E7(a4) :

(
0 1

1 a4

)
(x01;x

0
2) if a4 ≥ − 3

3√4
Ẽ7(a4) :

(
0 2x02

2x01 2a4x
0
2

)
We have the following theorem.

Theorem 2.2. i) Evolution algebras Ẽ1, Ẽ2 and Ẽ5 are isomorphic to E1;

ii) Ẽ6(a2; a3) is isomorphic to the evolution algebra E6(b2; b3), where b2 = a3

(
x0
2

x0
1

)2
,

b3 = a2

(
x0
1

x0
2

)2
;

iii) Ẽ7(a4) is isomorphic to E7(b4), where b4 = a4
3

√
(
x0
2

x0
1
)2.

Proof. Ẽ1 u E1: By the change of basis ẽ1 =
1
2e1 we can prove that the evolution algebra Ẽ1 is

isomorphic to E1.

Ẽ2 u E1: It is similar to the above proof.

Ẽ5 u E1: By the change of basis ẽ1 = 1
2e2, ẽ2 = e1 we can prove that the evolution algebra Ẽ5

is isomorphic to E1.

Ẽ6(a2; a3) u E6(b2; b3): We can see this by the change of basis ẽ1 =
1

2x0
1
e1 and ẽ2 =

1
2x0

2
e2.

Ẽ7(a4) u E7(b4): We can see this by the change of basis ẽ1 = 2 3
√

x01(x
0
2)

2e1 and ẽ2 = 2 3
√

(x01)
2x02e2.

�

3. Three-dimensional real evolution algebras with dim(E2) = 1

In [1] three dimensional complex evolution algebras are classified. Now we shall consider

classification of three dimensional real evolution algebras.
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Fix a three-dimensional real evolution algebra E and a natural basis B = {e1, e2, e3}. Let

MB be the matrix of structural constants of E relative to B:

MB =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

In order to classify three dimensional real evolution algebras with condition dim(E2) = 1 we

find a basis of E for which its structure matrix has an expression as simple as possible, where

by ’simple’ we mean with the maximal number of 0, 1 and −1 in the entries.

Let dim(E2) = 1. Without loss of generality we may assume e21 ̸= 0. Write e21 = a1e1+a2e2+

a3e3, where ai ∈ R and ai ̸= 0 for some i. Note that e21 is basis of E2.

Since e22, e
2
3 ∈ E2, there exist c1, c2 ∈ R such that

e22 = c1e
2
1 = c1(a1e1 + a2e2 + a3e3),

e23 = c2e
2
1 = c2(a1e1 + a2e2 + a3e3).

Then

MB =

 a1 a2 a3
c1a1 c1a2 c1a3
c2a1 c2a2 c2a3

 .

We analyze when E2 has the extension property. This means that there exists a natural basis

B′ = {e′1, e′2, e′3} of E with

e′1 = e21 = a1e1 + a2e2 + a3e3
e′2 = αe1 + βe2 + γe3
e′3 = δe1 + νe2 + ηe3

(2)

for some α, β, γ, δ, ν, η ∈ R such that βη − γν ̸= 0. This implies that

|PB′B| =

∣∣∣∣∣∣
a1 a2 a3
α β γ

δ ν η

∣∣∣∣∣∣ ̸= 0. (3)

By products e′1e
′
2 = 0, e′1e

′
3 = 0, e′2e

′
3 = 0, B′ is a natural basis if and only if the following

conditions are satisfied:

αa1 + βa2c1 + γa3c2 = 0 (4)

δa1 + νa2c1 + ηa3c2 = 0 (5)

αδ + βνc1 + γηc2 = 0.

In the above conditions, the structure matrix of E relative to B′ is:

MB′ =

 a21 + a22c1 + a23c2 0 0

α2 + β2c1 + γ2c2 0 0

δ2 + ν2c1 + η2c2 0 0

 .

Now, we start with the analysis of possible cases.

Case 1. Suppose that a1 ̸= 0.

By changing the basis, we may assume that e21 = e1 + a2e2 + a3e3. Using (4) we get α =

−(βa2c1+ γa3c2) and by (5), δ = −(νa2c1+ ηa3c2). If we replace α and δ in (3) we obtain that:

|PB′B| = (1 + a22c1 + a23c2)(βη − γν).

Now we check that |PB′B| is zero or not. This happens depending on 1 + a22c1 + a23c2 being

zero or not.
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Case 1.1 Assume 1 + a22c1 + a23c2 = 0.

In this case E2 has not the extension property since |PB′B| = 0. We will analyze what happens

when 1 + a23c2 ̸= 0 and when 1 + a23c2 = 0.

Case 1.1.1 If 1 + a23c2 ̸= 0.

Note that a22c1 ̸= 0 since otherwise we get a contradiction. Then c1 =
−1−a23c2

a22
. In this case, the

structure matrix is:

MB =


1 a2 a3

−1−a23c2
a22

−1−a23c2
a2

(−1−a23c2)a3
a22

c2 c2a2 c2a3

 .

Case 1.1.1.1 Suppose that a3 ̸= 0.

If we take the natural basis B′′ = {e1, a2e2, a3e3}, then

MB′′ =


1 1 1

−1− a23c2 −1− a23c2 −1− a23c2

a23c2 a23c2 a23c2

 . (6)

We are going to verify two cases: c2 = 0 and c2 ̸= 0.

Assume first c2 = 0. Then MB′′ =

 1 1 1

−1 −1 −1

0 0 0

. By considering another change of

basis we find a structure matrix with more zeros. Namely, let B′′′ = {e2, e1 + e3, e3}. Then

MB′′′ =

 1 1 0

−1 −1 0

0 0 0

 .

In what follows we will assume that c2 ̸= 0. We recall that we are considering the structure

matrix given in (6). Take I :=< (1 + a23c2)e1 + e2 >. Then I is a two-dimensional evolution

ideal which is degenerate as an evolution algebra.

Now, for B′′′ the natural basis change is

PB′′′B′′ =


1+D

2(1+a23c2)
−1+D

2(1+a23c2)
1+D

2(1+a23c2)

−1+D
2(1+a23c2)

1+D
2(1+a23c2)

−1+D
2(1+a23c2)

−(a23c2) 0 1


where D = (a23c2)

3 + 2(a23c2)
2 + (a23c2) and we obtain:

MB′′′ =

 1 1 0

−1 −1 0

1 1 0

 .

Note that |PB′′′B′′ | = −2(a23c2)(1 + a23c2)
2 ̸= 0 because a23c2 ̸= 0 and a23c2 ̸= −1.

Case 1.1.1.2 Suppose that a3 = 0. Then 1 + a22c1 = 0 and necessarily a22c1 ̸= 0. In this case,

MB =


1 a2 0

−1
a22

−1
a2

0

c2 c2a2 0

 . (7)

Again we will verify two cases depending on c2.
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Assume c2 > 0. Take B′′ = {e1, a2e2, 1√
c2
e3}. Then MB′′ =

 1 1 0

−1 −1 0

1 1 0

, which has

already appeared.

Assume c2 < 0. Take B′′ = {e1, a2e2, 1√
−c2

e3}. Then MB′′ =

 1 1 0

−1 −1 0

−1 −1 0

.

Suppose c2 = 0. Then, for B′′ = {e1, a2e2, e3} we have MB′′ =

 1 1 0

−1 −1 0

0 0 0

, matrix that

has already appeared.

Case 1.1.2 Suppose that 1 + a23c2 = 0.

This implies that a23c2 ̸= 0 and a22c1 = 0.

Case 1.1.2.1 Assume c1 ̸= 0.

This implies that a2 = 0. Moreover, since a3 ̸= 0, necessarily c2 = −1
a23

. If we take the natural

basis B′′ = {e1, e3, e2}, then MB′′ =


1 a3 0

−1
a23

−1
a3

0

0 0 0

 and we are in the Case 1.1.1.2.

Case 1.1.2.2 Suppose c1 = 0 and a2 = 0.

Take B′′ = {e1, a3e3, e2}. Then MB′′ =

 1 1 0

−1 −1 0

0 0 0

 as above.

Case 1.1.2.3 Suppose c1 = 0 and a2 ̸= 0.

Taking B′′ = {e1, e3, e2}, we are in the same conditions as in the Case 1.1.1.1 with c2 = 0.

Case 1.2 Assume 1 + a22c1 + a23c2 ̸= 0.

We will prove that E2 has the extension property. In any subcase we will provide with a natural

basis for E one of its elements gives a natural basis of E2.

Case 1.2.1 Suppose that c1 = c2 = 0.

Consider the natural basis B′ = {e21, e2 + e3, 2e2 + e3}. Then

MB′ =

 1 0 0

0 0 0

0 0 0

 .

We claim that this evolution algebra does not have a two-dimensional evolution ideal generated

by one element. To prove this consider f = me1 + ne2 + pe3. Then the ideal I generated by f

is the linear span of {f} ∪ {miei}i∈N. In order for I to have a natural basis with two elements,

necessarily m = 0, implying that the dimension of I is one, a contradiction.

Case 1.2.2 Assume that c1 = 0 and c2 ̸= 0.

Then 1 + c2a
2
3 ̸= 0. For B′ = {e1 + a2e2 + a3e3, e2,−a3c2e1 + e2 + e3} the structure matrix is

MB′ =

 1 + c2a
2
3 0 0

0 0 0

c2(1 + c2a
2
3) 0 0

 .
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Note that E2 has the extension property because the first element in B′ is e21, which is a

natural basis of E2.

Case 1.2.2.1 Assume that c2 > 0.

Consider B′′ =
{

1
1+c2a23

e1, e2,
1√

c2(1+c2a23)
e3

}
. Then

MB′′ =

 1 0 0

0 0 0

1 0 0

 .

Case 1.2.2.2 Assume that c2 < 0.

Consider B′′ =
{

1
1+c2a23

e1, e2,
1√

−c2(1+c2a23)
e3

}
. Then

MB′′ =

 1 0 0

0 0 0

−1 0 0

 .

We claim that these evolution algebras do not have a two-dimensional evolution ideal gen-

erated by one element. Let f = αe1 + βe2 + γe3. Then the ideal generated by f , say I, is

the linear span of {f, γe1, αe1} ∪ {(α2 + γ2)αie1}i∈N∪{0} ∪ {(α2 + γ2)2αie1}i∈N∪{0}. After some

computations, in order for I to have dimension 2 and to be degenerated implies α = 0 or γ = 0,

a contradiction.

Case 1.2.3 If c1 > 0 and c2 > 0.

If B′ is the natural basis such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =


1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

c2(1+a22c1+a23c2)


and the structure matrix is

MB′′ =

 1 0 0

1 0 0

1 0 0

 .

It is not difficult to show that this evolution algebra does not have a degenerate two-dimensional

evolution ideal generated by one element.

Case 1.2.4 If c1 > 0 and c2 < 0.

For the natural basis B′ such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =
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1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Case 1.2.4.1 Assume 1 + a22c1 + a23c2 > 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

−c2(1+a22c1+a23c2)


and the structure matrix is

MB′′ =

 1 0 0

1 0 0

−1 0 0

 .

Case 1.2.4.2 Assume 1 + a22c1 + a23c2 < 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
−c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

−c2(1+a22c1+a23c2)


and the structure matrix is:

MB′′ =

 1 0 0

−1 0 0

−1 0 0

 .

Case 1.2.5 If c1 < 0 and c2 > 0.

Case 1.2.5.1 Assume 1 + a22c1 > 0.

For the natural basis B′ such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =


1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Case 1.2.5.1.1 Assume 1 + a22c1 + a23c2 > 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
−c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

c2(1+a22c1+a23c2)





A.N. IMOMKULOV: CLASSIFICATION OF A FAMILY OF THREE DIMENSIONAL ... 233

and the structure matrix is:

MB′′ =

 1 0 0

−1 0 0

1 0 0

 .

It is not difficult to show that this evolution algebra does not have a degenerate two-dimensional

evolution ideal generated by one element.

Case 1.2.5.1.2 Assume 1 + a22c1 + a23c2 < 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

1 0 0

1 0 0

 , which has already appeared.

Case 1.2.5.2 Assume 1 + a22c1 < 0.

For B′ the natural basis such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =


1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Case 1.2.5.2.1 Assume 1 + a22c1 + a23c2 > 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
−(1+c1a22)√

c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

1 0 0

−1 0 0

 , which has already appeared.

Case 1.2.5.2.2 Assume 1 + a22c1 + a23c2 < 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
−c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
−(1+c1a22)√

c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

−1 0 0

−1 0 0

 , which has already appeared.
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Case 1.2.6 If c1 < 0 and c2 < 0.

Case 1.2.6.1 Assume 1 + a22c1 > 0.

For the natural basis B′ such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =


1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Case 1.2.6.1.1 Assume 1 + a22c1 + a23c2 > 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
−c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

−c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

−1 0 0

−1 0 0

 , which has appeared above.

Case 1.2.6.1.2 Assume 1 + a22c1 + a23c2 < 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
1+c1a22√

−c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

1 0 0

−1 0 0

 , which has already appeared.

Case 1.2.6.2 Assume 1 + a22c1 < 0.

For the natural basis B′ such that PB′B =


1 a2 a3

−a2c1 1 0

−a3c2
1+c1a22

−a3a2c2
1+c1a22

1

, we obtain that MB′ =


1 + a22c1 + a23c2 0 0

c1(1 + c1a
2
2) 0 0

c2(1+a22c1+a23c2)

(1+c1a22)
0 0

 .

Case 1.2.6.2.1 Assume 1 + a22c1 + a23c2 > 0.
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Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
−(1+c1a22)√

−c2(1+a22c1+a23c2)



and the structure matrix is: MB′′ =

 1 0 0

1 0 0

1 0 0

 , which has already appeared.

Case 1.2.6.2.2 Assume 1 + a22c1 + a23c2 < 0.

Now, consider the natural basis B′′ = {f1, f2, f3} such that

PB′′B′ =


1

1+a22c1+a23c2
0 0

0 1√
−c1(1+c1a22)(1+a22c1+a23c2)

0

0 0

√
−(1+c1a22)√

−c2(1+a22c1+a23c2)


and the structure matrix is:

MB′′ =

 1 0 0

−1 0 0

1 0 0

 .

Case 1.2.7 Suppose that c1 ̸= 0, c2 ̸= 0 and 1 + a22c1 = 0.

Then a2a3c1c2 ̸= 0 and so c1 = − 1
a22
. For B′ we have

MB′ =


a23c2 0 0

c2
a23

0 0

−a23c2 0 0

 .

Considering natural basis B′′ = { 1
a23c2

e1,
1
c2
e2,

1
a23c2

e3} we obtain MB′′ =

 1 0 0

1 0 0

−1 0 0

. Which

has already appeared.

Case 1.2.8 Suppose that c1 ̸= 0, and c2 = 0.

Considering the natural basis B′′ = {e1, e3, e2} we obtain MB′′ =

 1 a3 a2
0 0 0

c1 a3c1 a2c1

 , and we

are in the same conditions as in Case 1.1.1.2.

Case 2 Suppose that a1 = 0.

The structure matrix of the evolution algebra is

MB =

 0 a2 a3
0 a2c1 a3c1
0 a2c2 a3c2

 .

Necessarily there exists i ∈ {2, 3} such that ai ̸= 0. Without loss in generality we assume a2 ̸= 0.

Case 2.1 Assume c1 ̸= 0. Consider the natural basis B′′ = {e2, e3, e1}. Then MB′′ =
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a2c2 a3c2 0

1 a3 0

 and we are in the same conditions as in Case 1.

Case 2.2 If c1 = 0.

Case 2.2.1 Assume c2a3 ̸= 0.

Taking the natural basis B′′ = {e3, e2, e1}, we obtain MB′′ =

 a3c2 a2c2 0

0 0 0

a3 a2 0

 and we are in

the same conditions as in the Case1.

Case 2.2.2 Suppose that c2a3 = 0.

Case 2.2.2.1 Assume c2 = 0.

Take the natural basis B′ = {a2e2 + a3e3,
1
a2
e3, e1}. Then

MB′ =

 0 0 0

0 0 0

1 0 0

 .

Note that E2 has the extension property.

Case 2.2.2.2 Assume c2 > 0.

Then a3 = 0. For B′ = {a2e2, e1, 1√
c2
e3} we have

MB′ =

 0 0 0

1 0 0

1 0 0

 .

Case 2.2.2.3 Assume c2 < 0.

Then a3 = 0. For B′ = {a2e2, e1, 1√
−c2

e3} we have

MB′ =

 0 0 0

1 0 0

−1 0 0

 .

Thus we have proved the following theorem.

Theorem 3.1. Any three dimensional real evolution algebra E with dim(E2) = 1 is isomorphic

to one of the following pairwise non-isomorphic algebras:

E1 :

 1 1 0

−1 −1 0

0 0 0

, E2 :

 1 1 0

−1 −1 0

1 1 0

, E3 :

 1 1 0

−1 −1 0

−1 −1 0

, E4 :

 1 0 0

0 0 0

0 0 0

,

E5 :

 1 0 0

0 0 0

1 0 0

, E6 :

 1 0 0

0 0 0

−1 0 0

, E7 :

 1 0 0

1 0 0

1 0 0

,

E8 :

 1 0 0

1 0 0

−1 0 0

, E9 :

 1 0 0

−1 0 0

−1 0 0

, E10 :

 1 0 0

−1 0 0

1 0 0

,

E11 :

 0 0 0

0 0 0

1 0 0

, E12 :

 0 0 0

1 0 0

1 0 0

, E13 :

 0 0 0

1 0 0

−1 0 0

 .
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Remark 3.1. One can classify real three-dimensional evolution algebras in case dim(E2) ̸= 1.

But it will contain too long cases and subcases.

4. Approximation of three-dimensional evolution algebras (dim(E2) = 1)

In this section for the evolution algebras Ei, i = 1, 13 from Theorem 3.1 we will construct

evolution algebras corresponding to fixed points of the operator F .

Let E be three dimensional evolution algebra with the matrix (aij), i, j ∈ {1, 2, 3}. We will

rewrite the operator F for this evolution algebra as:

F :


x′1 = a11x

2
1 + a21x

2
2 + a31x

2
3,

x′2 = a12x
2
1 + a22x

2
2 + a32x

2
3,

x′3 = a13x
2
1 + a23x

2
2 + a33x

2
3.

Jacobian of the operator F at the point x has a form

JF (x) =

 2a11x1 2a21x2 2a31x3
2a12x1 2a22x2 2a32x3
2a13x1 2a23x2 2a33x3

 .

Following [9] and [3] we define an evolution algebra Ẽ with matrix JF (x) as the matrix of

structural constants.

There is no non-zero fixed point of the operator F for the evolution algebras Ei, i ∈ {1 − 3,

11 − 13} and (1; 0; 0) is the unique fixed point of the operator F for the evolution algebras

Ei, i = 4, 10. So

JF (1; 0; 0) =

 2 0 0

0 0 0

0 0 0

 .

It is easy to see that the evolution algebra with the matrix JF (1; 0; 0) is isomorphic to the

evolution algebra E4.

5. Conclusions

One of the best methods in the studying of dynamics of nonlinear functions is to linearize this

function on the open neighborhood of a certain point. We notice that the linear approximation

of a function is the first order Taylor expansion around the point of interest. Our aim is a

linearization of algebras with well known algebras which have some good properties. In this

paper for the test algebras we have chosen evolution algebras.

We have classified three dimensional real evolution algebras with condition dim(E2) = 1.

Then we constructed evolution algebras corresponding to idempotent elements of two and three

dimensional evolution algebras and we studied isomorphism such algebras with given evolution

algebras.

Clearly it would be of interest to study the evolution algebras whose matrix of structural

constants is Jacobian of evolution operator defined on the finite dimensional algebra. The

development of such theory will provide the necessary tools to deal with the general situation.

Future research should also include to consider the notion of approximation of finite dimensional

algebras with the evolution algebras then we will study some properties of such algebras.
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